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Objectives: Cardiovascular and metabolic traits (CMT) are influenced by complex interactive pro-
cesses including diet, lifestyle, and genetic predisposition. The present study investigated the in-
teractions of these risk factors in relation to CMTs in the Turkish population.
Methods: We applied bootstrap agglomerative hierarchical clustering and Bayesian network
learning algorithms to identify the causative relationships among genes involved in different
biological mechanisms (i.e., lipid metabolism, hormone metabolism, cellular detoxification, aging,
and energy metabolism), lifestyle (i.e., physical activity, smoking behavior, and metropolitan res-
idency), anthropometric traits (i.e., body mass index, body fat ratio, and waist-to-hip ratio), and
dietary habits (i.e., daily intakes of macro- and micronutrients) in relation to CMTs (i.e., health
conditions and blood parameters).
Results: We identified significant correlations between dietary habits (soybean and vitamin B12
intakes) and different cardiometabolic diseases that were confirmed by the Bayesian network-
learning algorithm. Genetic factors contributed to these disease risks also through the pleiotropy
of some genetic variants (i.e., F5 rs6025 and MTR rs180508). However, we also observed that
certain genetic associations are indirect since they are due to the causative relationships among the
CMTs (e.g., APOC3 rs5128 is associated with low-density lipoproteins cholesterol and, by extension,
total cholesterol).
Conclusions: Our study applied a novel approach to integrate various sources of information and
dissect the complex interactive processes related to CMTs. Our data indicated that complex
causative networks are present: causative relationships exist among CMTs and are affected by
genetic factors (with pleiotropic and non-pleiotropic effects) and dietary habits.
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Introduction

Cardiometabolic diseases are the leading cause of death
worldwide. They include a wide range of disorders, such as
obesity, insulin resistance, metabolic dyslipidemia, atheroscle-
rosis, type II diabetes, and cardiovascular diseases (CVD), various
combinations of which frequently occur simultaneously [1].
Anthropometric measurements and blood parameters are
phenotypic traits used to estimate their risk, as well as tomonitor
and diagnose these disorders [2]. Studies of cardiometabolic traits
(CMT) demonstrated how dietary habits, lifestyle, and genetic
defects converge to alter the same molecular mechanisms (e.g.,
estyle, and genetic predisposition in cardiovascular and metabolic
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lipid metabolism, hormone metabolism, cellular detoxification,
aging, and energy metabolism) that increase the risk of car-
diometabolic diseases [3–5]. These findings indicate that CMTs,
dietary habits, lifestyle, and genetic predisposition are all
included in the same intricate network of causative relationships.
Although this knowledge suggests that investigations utilizing
multiple types of data are necessary to dissect the complex
pathogenesis of these traits,most studies still focuson approaches
based on a single type of data. To our knowledge, few studies have
applied network-based approaches to investigate CMTs [6,7].

Here, we used hierarchical clustering analysis and Bayesian
networks to analyze the causative relationships among genetic
loci involved in relevant biological mechanisms (i.e., lipid meta-
bolism, hormone metabolism, cellular detoxification, aging, and
energy metabolism), lifestyle (i.e., physical activity, smoking
behavior, andmetropolitan residency), anthropometric traits (i.e.,
bodymass index [BMI], body fat ratio [BFR], andwaist-to-hip ratio
[WHR]), and dietary habits (i.e., daily intakes of macro- and
micronutrients) in relation to health conditions and blood pa-
rameters related to CMTs. Specifically, we investigated a repre-
sentative sample of the Turkish population. To our knowledge,
genetic and epidemiologic data are notwidely available regarding
the pathogenesis of CMTs in the Turkish population [8,9]. The
genetic structure of the Turkish population is complex due to its
demographic history and location near Central Asia, Europe, and
the Middle East [10]. Relevant genetic differences are present
between Turkish and European populations, partially explaining
the health disparities of Turkish communities in Northern Europe
[11] and also contributing to the pharmacogenetics differences
observed [12]. Moreover, comprehensive information regarding
the lifestyle and dietary habits of the Turkish population could
enhance our understanding of the relationship between envi-
ronmental factors and the risk of cardiovascular diseases.
Accordingly, the present study providedwhat is to our knowledge
the first comprehensive report of the dietary habits in the Turkish
population and proposed an innovative approach to integrate
genetic and non-genetic data in the investigation of CMTs.

Material and methods

Samples

All procedures followed were in accordance with the ethical standards of the
responsible committee on human experimentation (institutional and national)
and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent
was obtained from all subjects included in the study. Participants were recruited
from the seven largest cities (Istanbul, Ankara, Izmir, Bursa, Adana, Antalya, and
Samsun) within five regions of Turkey. The demographic characteristics of these
cities are similar to the overall structure of population in Turkey since these large
cities harbor 40% of the population in Turkey. All of the participants voluntarily
applied to the GENAR Biotechnology and Molecular Genetics, Research and
Application Laboratories to enroll in a preventive health care intervention pro-
gram [13]. The study population included unrelated Turkish participants, who
were at least 18 y of age. Personal and health information collection, genetic and
biochemical tests, and nutritional assessments were performed after obtaining
informed consent. All collected data were selected according to their involve-
ment in CMTs. The screened genetic and biochemical parameters were grouped
according to their contributions to different biological mechanisms. Accordingly,
different disease-related test packages, which contain relevant combinations of
genetic and non-genetic analyses, were generated. The volunteers could choose
one or more of those packages for genetic and biochemical testing according to
their health priorities. These packages had different genetic and blood parame-
ters and therefore the number of screened individuals per parameter varied.

Collection of personal and health information, nutritional assessment, and blood-
related analyses

A standard questionnaire was used to collect the following: personal infor-
mation, health status, living and working conditions, lifestyle information
Please cite this article in press as: Karaca S, et al., Nutritional habits, lif
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including nutritional habits, food consumption, physical activity and exercise,
and smoking status (Table 1). The questionnaire was completed by the partici-
pants with the assistance of trained personnel. The most appropriate test pack-
age(s) were chosenwith the assistance of the health professionals (i.e., physicians
authorized to be practitioners after an appropriate training). Collected health
information refers to the known health conditions, based on the volunteers’ past
medical records. Blood samples were collected during fasting for a number of
blood parameters. Biochemical tests were carried out in licensed medical labo-
ratories. In accordance with the study design, the health conditions and
biochemical parameters are independent data.

The food consumption information was collected using a food frequency
questionnaire (FFQ) and a detailed photographic food portion size atlas, both
developed for this program according to nutrition habits in Turkey. The nutri-
tional content of the FFQwas calculated using the professional nutrition database
software BeBis version 5 [14]. Anthropometric measurements (height, weight,
waist circumference, and BFR) were made by dietitians. Further information
about data collection is available in our previous article [13].

Genotyping

Genomic DNAs were isolated from buccal swabs or whole blood samples
using an MN DNA isolation kit (Macherey Nagel-Nucleospin, Düren, Germany).
SequenomRealSNP software was used to design sequence-specific amplification
primers (Metabion, Martinsreid, Germany) for the multiplex level (details
regarding the PCR primers, extended probes, and multiplex combinations are
available upon the request). The investigated variants were selected according to
their involvement in molecular pathways related to CMTs (e.g. lipid metabolism,
cardio-vascular diseases, hormonemetabolism, cellular detoxification, aging, and
energy metabolism) [11], developing the Gentest practice model to screen ge-
netic predisposition to complex diseases of healthy Turkish volunteers [13]. All
laboratory procedures were performed according to the manufacturer’s protocol
of the MassArray platform (Sequenom Inc., San Diego, CA, USA). Detailed infor-
mation about the genotyping pipeline is reported in our previous study [15].

Statistical analysis

Statistical analysis was performed using the computing environment R. Non-
genetic variables were regressed with respect to age and sex to compute the
residuals and correct for the strong confounding effect of age and sex following
the analysis. Genotype data were converted in dosage variables on the basis of
their minor allele frequency (MAF). Spearman’s correlation test was used to test
the correlation among the variables collected and we used the rho coefficient to
analyze the hierarchical clustering among the tested variables. Specifically, we
calculated dissimilarity as 1-Abs(Correlation) and used it as distance. Distance
matrixes were used for the hierarchical clustering analysis and the R package
pvclust [16] to calculate P values for each cluster after 10,000 bootstrap repli-
cations. We considered clusters with approximately unbiased P value > 95% as
significant. We used PANTHER Classification Systems and the PANTHER Pathways
annotation data set to detect the molecular pathways related to the genetic
clusters identified [17]. To investigate the causative relationship of genetic factors
with CMTs, we performed a causative model analysis based on Bayesian net-
works. Specifically, we used the R package bnlearn [18], applying the hill-
climbing learning algorithm, and determined the best causative network for
each cluster considering the BIC (Bayesian information criterion) score.

Results

Table 1 shows the characteristics of the study population in
terms of personal information, anthropometric traits, diet, life-
style, health conditions, aspirin use, blood parameters, vital
signs, and genetic polymorphisms. In our sample, we observed
39% of overweight subjects (BMI 25-30) and 32% of obese sub-
jects (BMI > 30) in accordance with prevalence reported for the
Turkish general population [19]. To identify the relationships
between non-genetic factors (i.e., anthropometric traits, diet,
lifestyle, and aspirin use) and the CMTs (i.e., blood parameters
and health conditions), we estimated the correlation matrix
among these variables (Supplemental Table 1) and performed a
bootstrap agglomerative hierarchical clustering using the
dissimilarity matrix (Fig. 1). We observed 11 significant clusters,
suggesting relationships among CMTs, nutritional factors, and
other environmental factors. Most of the significant clusters
consisted of parameters included in the same phenotypic
estyle, and genetic predisposition in cardiovascular and metabolic
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Table 1
Characteristics of study populations

Characteristic Category Unit N Measurements

Sex Personal information Females (%) 247 87 (35)
Age y 247 45.2 � 11.8

Body mass index (BMI) Anthropometric traits kg/m2 244 28.5 � 5.5
Body fat ratio (BFR) % 230 29.4 � 9.1
Waist hip ratio (WHR) – 170 0.89 � 0.08

Sodium intake Nutritional information mg 171 4060 � 1374
Optimal energy intake ratio (OEIR) daily 247 1.18 � 0.26
Daily fat intake g 247 92 � 29
Fiber intake g 247 34 � 10
Alcohol intake g 247 2 (0–176)
Vitamin A intake IU 247 3201 (1135–17 447)
Vitamin E intake IU 247 26.9 (7–107)
Vitamin B6 intake mg 247 2 (0.8–253)
Folate intake mg 247 440 (50–990)
Vitamin B12 intake mg 247 5.4 (0.4–73.6)
Vitamin C intake mg 247 210 (51–714)
Potassium intake mg 247 3830 (1270–9204)
Magnesium intake mg 247 448 (191–924)
Zinc intake mg 246 15.2 (7.8–28.6)
Sucrose intake g 246 44.8 � 21.3
Saturated fat acid (SFA) intake g 247 30.9 � 12
Monounsaturated fatty acids (MUFA) intake g 247 36.4 � 12.6
Polyunsaturated fatty acids (PUFA) intake g 245 24 (9–127)
Cholesterol intake mg 247 269 � 120
Caffeine intake mg 247 270 � 159
Ratio of omega-6 to omega-3 essential

fatty acids
– 244 9.8 � 2.9

Vegetable consumption serving 247 2 (1–6)
Fruit consumption serving 247 2 (0–8)
Soybean consumption g 247 0 (0–23)
Omega-3 fatty acids intake g 247 2.5 � 0.9

Physical activity Life-style Daily (1/2/3)
(Sedentary/Medium/Heavy)

244 1 (1–3)

Tobacco consumption 0/1/2
(No/Past/Active)

245 1 (0–2)

Passive smokers Y (%) 190 83 (43)
Living in metropolitan area for at least 10 y Y (%) 205 197 (96)

Impaired glucose tolerance; insulin
resistance; hyperglycemia

Health information Y (%) 245 21 (9)

Diabetes – Type I (T1D) Y (%) 245 3 (1)
Diabetes – Type II (T2D) Y (%) 245 20 (8)
Heart attack or stroke Y (%) 245 3 (1)
Hypertension Y (%) 246 55 (22)
Hypercholesterolemia Y (%) 245 93 (38)
Hypertriglyceridemia Y (%) 244 46 (19)
Cardiovascular diseases (CVD) Y (%) 242 19 (8)
Thrombosis Y (%) 242 3 (1)

Aspirin use Drug use Y (%) 247 67 (27)

Fasting plasma glucose (FPG) Blood parameters mg/dL 244 91 (61–281)

Glycated hemoglobin (HbA1 c) % 119 5.7 (4.8–10.2)
Fasting insulin (FI) mIU/mL 102 13.5 � 11.6
Homeostatic model assessment - insulin

resistance (HOMA-IR)
– 102 3.7 � 3.0

Total cholesterol mg/dL 245 198 � 39
High-density lipoproteins (HDL) cholesterol mg/dL 244 51 � 15
Total/HDL cholesterol ratio - 245 4.2 � 1.3
Low-density lipoproteins (LDL) cholesterol mg/dL 245 121 � 34
Triacylglycerols mg/dL 244 120 (28–1193)
Lipoprotein a (LPA) mg/dL 85 24 � 22
High-sensitivity C-reactive protein (hs-CRP) mg/L 244 1.5 (0–38.8)
Erythrocyte sedimentation rate (ESR) mm/hour 160 12 � 9
Homocysteine mmol/L 243 11 � 4
Thyroid-stimulating hormone (TSH) mIU/L 145 1.8 � 1.5
Uric acid mg/dL 157 5.5 � 1.4

Systolic blood pressure (SBP) Vital signs mmHg 228 119 � 16

Diastolic blood pressure (DBP) mmHg 228 77 � 11
Pulse pressure mmHg 228 42 � 11

(Continued)
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Table 1 (Continued )

Characteristic Category Unit N Measurements

APOC3 rs5128 Genetic polymorphisms MAF 243 0.187
LPL rs328 MAF 240 0.085
CETP rs708272 MAF 218 0.452
F5 rs6025 MAF 236 0.047
F2 rs1799963 MAF 238 0.027
MTHFR rs1801133 MAF 241 0.336
MTHFR rs1801131 MAF 246 0.358
MTRR rs1801394 MAF 245 0.480
NOS3 rs1799983 MAF 245 0.318
NOS3 rs2070744 MAF 172 0.357
IL6 rs1800795 MAF 247 0.273
IL6 rs1800796 MAF 245 0.082
TNF rs1800629 MAF 247 0.101
VDR rs1544410 MAF 242 0.393
VDR rs731236 MAF 246 0.360
VDR rs2228570 MAF 246 0.307
COL1 A1 rs1800012 MAF 244 0.117
ACE Ins/Del (rs4646994/rs1799752) MAF 182 0.431
PPARG rs1801282 MAF 228 0.083
SOD2 rs1799725 MAF 245 0.420
CYP1 A1 rs4646903 MAF 231 0.143
MTR rs1805087 MAF 144 0.181
LIPC rs1800588 MAF 206 0.201
PON1 rs662 MAF 201 0.294
APOA1 rs670 MAF 196 0.130
CYP1 B1 rs1056836 MAF 146 0.360
CYP1 B1 rs1800440 MAF 125 0.228
SERPINE1 rs1799889 MAF 237 0.222
COMT rs4680 MAF 193 0.484
AGT rs699 MAF 200 0.490
GNB3 rs5443 MAF 246 0.329
ITGB3 rs5918 MAF 188 0.149
CYP19 A1 rs10046 MAF 187 0.500
CYP17 A1 rs743572 MAF 180 0.333
ADRB1 rs1801253 MAF 186 0.293
ADRB2 rs1042713 MAF 187 0.398
ADRB2 rs1042714 MAF 186 0.309
ADRB3 rs4994 MAF 186 0.056
ELAC2 rs34152967 MAF 218 0.062
IL10 rs1800896 MAF 136 0.460
APOE rs429358 MAF 166 0.069
APOE rs7412 MAF 163 0.046
PLIN1 rs894160 MAF 113 0.376

Absolute frequency (%), mean (�standard deviation), median (minimum-maximum), and minor allele frequency (MAF) are reported for dichotomous, normal
distributed, non-normal distributed variables, and genotypes, respectively
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categories. In some cases, we observed potential relationships
between different categories. The largest cluster that included
multiple cardio-metabolic diseases (i.e., CVD, T2D, HA-stroke,
IGT-IR-hyperglycemia, T1D, and thrombosis) also comprised
two “dietary habits” variables: soybean intake and vitamin B12
intake. Soybean intake is positively correlated with T1 D
(Spearman’s rho¼ 0.46) and negatively correlatedwith the other
cardio-metabolic diseases present in the cluster (Spearman’s
rho: –0.57 [CVD], –0.61 [T2 D], 0.76 [HA-stroke], –0.40 [IGT-IR-
hyperglycemia], and –0.53 [thrombosis]). The opposite correla-
tions are observed for vitamin B12 intake: Negative correlation
with T1 D (Spearman’s rho ¼ –0.66) and positive correlations
with the other cardio-metabolic diseases (Spearman’s rho: 0.50
[CVD], 0.53 [T2 D], 0.56 [HA-stroke], 0.63 [IGT-IR-
hyperglycemia], and 0.68 [thrombosis]). The cluster with
HOMA-IR (homeostatic model assessment–insulin resistance)
and fasting insulin (FI) also included the anthropometric traits
BMI and BFR, which are positively correlated with FI and HOMA-
IR values (BMI Spearman’s rho: 0.55 [FI] and 0.51 [HOMA-IR], BFR
Spearman’s rho: 0.53 [FI] and 0.52 [HOMA-IR]).

We tested the associations of genetic polymorphisms
screened with CMTs (Supplemental Table 2). On the basis of
Please cite this article in press as: Karaca S, et al., Nutritional habits, lif
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these genetic associations, we performed hierarchical clustering
analysis for the phenotypic traits and genetic loci, to group these
parameters in accordance with their similarities (i.e., phenotypic
traits clustered by their genetic similarity and genetic loci clus-
tered by their phenotype-association similarity). Figure 2 reports
clustering trees for phenotypic traits (Fig. 2A) and genetic loci
(Fig. 2B) and the heatmap of the genetic associations (Fig. 2C).
Through a hierarchical clustering analysis of genetic loci, we
identified three significant clusters: 1) a cluster that includes
VDR variants (i.e., rs1544410 and rs731236); 2) a cluster related
to PON1 rs662 and IL10 rs1800896; and 3) a third cluster related
to CETP rs708272 and F2 rs1799963. The VDR cluster is due to the
high linkage disequilibrium (LD) between VDR variants, whereas
the other gene clusters may be due to biological mechanisms
shared by the included genes. No high LD was observed among
the other variants investigated. The PANTHER Classification
System detected enriched molecular pathways for both of these
gene clusters: the PON1-IL10 cluster for the interleukin signaling
pathway (P ¼ 0.009), and the CETP-F2 cluster for blood coagu-
lation (P ¼ 0.005) and CCKR signaling (P ¼ 0.016).

Considering the hierarchical clustering analysis of CMTs
based on their genetic similarity (Fig. 2A), we identified four
estyle, and genetic predisposition in cardiovascular and metabolic
/j.nut.2015.12.027



Fig. 1. Hierarchical clustering tree considering lifestyle, diet, personal information, and cardiovascular and metabolic traits. For each edge, it is reported the approximately
unbiased P-value (left) and the bootstrap probability (right). Significant clusters (approximately unbiased P-value > 95%) are highlighted in red. The acronym descriptions are
reported in Table 1.
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significant clusters. A large cluster included the cardiometabolic
diseases (i.e., CVD, T2D, HA-stroke, IGT-IR-hyperglycemia, T1D,
thrombosis, hypercholesterolemia, and hyperglycemia). Three
small clusters included: 1) HOMA-IR and FI; 2) BMI and BFR; and
3) total cholesterol and LDL. Comparing the hierarchical clus-
tering analyses based on their genetic similarity and on their
correlations, we observed that significant clusters overlapped. To
understand whether the genetic similarity observed was due to
causative relationships among the CMTs or shared genetic ar-
chitecture, we performed a causative model analysis based on
Bayesian networks. Specifically, for each significant phenotypic
clusters generated by genetic-similarity analysis we selected the
genetic variants associated with the CMTs (P < 0.05) and the
non-genetic factors that clustered with the same CMTs in the
first clustering analysis. Then, we tested the causative relation-
ships between CMTs regard to genetic and non-genetic factors.
On this basis, we determined the best causative model for: A)
CVD, T2D, HA-stroke, IGT-IR-hyperglycemia, T1D, thrombosis,
hypercholesterolemia, hyperglycemia, soybean intake, vitamin
B12 intake, IL10 rs1800896, COL1 A1 rs1800012, VDR rs1544410,
ITGB3 rs5918, APOC3 rs5128, IL6 rs1800795, F2 rs1799963, F5
rs6025, and MTR rs1805087; B) BMI, BFR, COL1 A1 rs1800012,
and NOS3 rs1799983; and C) total cholesterol, LDL, MTRR
rs1801394, LIPC rs1800588, COL1 A1 rs1800012, APOE rs7412,
CYP1 A1 rs4646903, ITGB3 rs5918, APOC3 rs5128, IL6 rs1800795,
and CETP rs708272 (Fig. 3).

Discussion

Since investigating multiple ethnic groups has been demon-
strated to be an effective way to dissect the pathogenesis of
complex traits [20], we performed an investigation on a Turkish
Please cite this article in press as: Karaca S, et al., Nutritional habits, lif
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study population regarding the interactions among gene varia-
tions, lifestyle and dietary habits as they pertain to health con-
ditions and blood parameters related to CMTs.

Initially, we focused on the relationships among CMTs (i.e.,
health conditions and blood parameters), nutritional (i.e., daily
intakes of macro- and micronutrients), and other environmental
factors (i.e., lifestyle and personal characteristics). In our boot-
strap agglomerative hierarchical clustering, we observed 11
significant clusters that highlighted the complex relationship
among CMTs, nutritional and other environmental factors. Most
of them included parameters that belong to the same pheno-
typic categories. Regarding CMTs, several health conditions and
blood parameters clustered together in agreement with current
knowledge about the cooccurrence of cardiovascular and
metabolic alterations [21]. We also identified clusters that
included parameters related to dietary habits, a correlation
which agrees with previous epidemiologic studies that
demonstrated how different dietary habits tend to increase or
reduce the intakes of healthy and unhealthy nutrients together
[22]. Further, we identified a correlation between variables
included in different phenotypic categories. Soybean and
vitamin B12 intakes correlated with multiple cardiometabolic
disorders, suggesting potential effects on the disease risk.
Epidemiologic studies indicated that soybean intake reduced
the risk of cardiovascular and metabolic diseases [23], and
molecular experiments proved its antiinflammatory and anti-
oxidant effects [24]. Accordingly, the observed correlation be-
tween soybean intake and cardiometabolic diseases reinforces
the beneficial effects related to its consumption. Vitamin B12 is
an important micronutrient and its deficiency is associated with
hyperhomocysteinemia and comorbidities related to cardio-
vascular and metabolic diseases [25]. However, its role in the
estyle, and genetic predisposition in cardiovascular and metabolic
/j.nut.2015.12.027



Fig. 2. Hierarchical clustering trees related cardiovascular and metabolic traits (A) and genetic loci (B) and the heatmap of their associations (C). In heatmap, black cells
represent significant associations (P < 0.05) and gray cells represent trend associations (P < 0.1). The description of the hierarchical clustering trees is reported in Figure 1.
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Fig. 3. Best causative models of the networks identified: (A) CVD, T2D, HA-stroke, IGT-IR-hyperglycemia, T1D, thrombosis, hypercholesterolemia, hyperglycemia, soybean
intake, vitamin B12 intake, IL10 rs1800896, COL1 A1 rs1800012, VDR rs1544410, ITGB3 rs5918, APOC3 rs5128, IL6 rs1800795, F2 rs1799963, F5 rs6025, and MTR rs1805087;
(B) BMI, BFR, COL1 A1 rs1800012, and NOS3 rs1799983; (C) total cholesterol, LDL, MTRR rs1801394, LIPC rs1800588, COL1 A1 rs1800012, APOE rs7412, CYP1 A1 rs4646903,
ITGB3 rs5918, APOC3 rs5128, IL6 rs1800795, and CETP rs708272.
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risk of CMTs in adults is still unclear [26]. The main sources of
vitamin B12 are foods of ruminant origin, so dairy and meat
products contribute to its intake [27]. Accordingly, vitamin B12
intake can also be a marker of the consumption of dairy and
meat products, foods strongly associated with cardiometabolic
risk. Thus, the correlation observed may be linked to an over-
consumption of animal products.

Considering the correlations between CMTs and the genetic
variants tested, we performed hierarchical clustering analyses
among genetic loci (i.e., variants grouped in accordance with
their association with phenotypic traits), and among the CMTs
(i.e., the CMTs are clustered in accordance with the associations
with genetic variants). Analyzing the genetic loci, we identified a
significant cluster due to the LD between VDR variants and two
potentially relatedmolecular pathways. The PON1 and IL10 genes
are both involved in the interleukin signaling pathway and have
been previously associated with cardiovascular and immuno-
logic phenotypes [28,29]. The interleukin signaling pathway
plays a relevant role in the cross talk between inflammatory
processes and cardiometabolic dysregulation [30], supporting
the phenotypic convergence observed between PON1 and IL10 in
relation to CMTs. The CETP and F2 genes showed enrichments for
the blood coagulation and CCKR signaling pathways. Previous
studies reported the involvement of both these genes in
Please cite this article in press as: Karaca S, et al., Nutritional habits, lif
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coagulation, homocysteine, and lipoprotein metabolism [31].
Furthermore, their involvement in CCKR signaling also indicates
a potential association in digestion, appetite control and body
weight regulation [32]. These data seem to support the pheno-
typic convergence observed between CETP and F2.

Considering the hierarchical clustering of phenotypic traits on
the basis of their genetic similarity, we noticed significant clus-
ters for: 1) CVD, T2D, HA-stroke, IGT-IR-hyperglycemia, T1D,
thrombosis, hypercholesterolemia, and hyperglycemia; 2) BMI
and BFR; 3) total and LDL cholesterol; and 4) HOMA-IR and FI.
The significant clusters were also observed by the hierarchical
clustering based on their correlations, confirming that they are
not independent traits. However, previous studies have
demonstrated that they have different genetic architectures
[33–35]. Accordingly, we used a Bayesian network approach to
verify whether the genetic similarity observed among CMTs is
due to causative relationships or shared genetic architecture. In
Figure 3A, we reported the best causative model among CVD,
T2D, HA-stroke, IGT-IR-hyperglycemia, T1D, thrombosis, hyper-
cholesterolemia, hyperglycemia, soybean intake, vitamin B12
intake, IL10 rs1800896, COL1 A1 rs1800012, VDR rs1544410,
ITGB3 rs5918, APOC3 rs5128, IL6 rs1800795, F2 rs1799963, F5
rs6025, and MTR rs180508. We observed an intricate causative
network that included multiple causative relationships among
estyle, and genetic predisposition in cardiovascular and metabolic
/j.nut.2015.12.027
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CMTs; CMTs and dietary habits (i.e., soybean and vitamin B12
intake); and CMTs and genetic variants. This causative network
agrees with numerous epidemiologic and molecular studies that
have demonstrated that cardiovascular and metabolic diseases
are affected by shared pathogenic mechanisms (i.e., shared ge-
netic and environmental factors) and causative relationships [36,
37]. Furthermore, F5 rs6025 and MTR rs180508 have demon-
strated pleiotropic effects on multiple CMTs. Previous studies
reported that genetic pleiotropy (i.e., a single gene affecting
multiple phenotypic traits) is common among cardiometabolic
diseases, contributing to the shared pathogenesis of these traits
[38,39]. Figure 3B, reports the best causativemodels for BMI, BFR,
COL1 A1 rs1800012, and NOS3 rs1799983. We observed a caus-
ative relationship between BMI and BFR. Both these anthropo-
metric measurements are related to body fat and their strong
correlation is well known [40]. However, different genetic asso-
ciations are present for these correlated traits. The NOS3
rs1799983 genotypewas associated with BMI, confirming its role
in BMI variability [41]. The COL1 A1 rs1800012 genotype was
correlatedwith BFR. COL1 A1 plays a relevant role in osteogenesis
and recent studies have suggested its involvement in adipose
tissuematrix remodeling [42,43]. In this second causative model,
we identified two correlated traits with different genetic factors
(i.e., no pleiotropic effects). In Figure 3C, we reported the best
causative models among total cholesterol, LDL, MTRR rs1801394,
LIPC rs1800588, COL1 A1 rs1800012, APOE rs7412, CYP1 A1
rs4646903, ITGB3 rs5918, APOC3 rs5128, IL6 rs1800795, and CETP
rs708272. The Bayesian network analysis confirmed the associ-
ation between APOC3 rs5128 and LDL and the causative rela-
tionship between LDL and total cholesterol. APOC3 encodes a
very low-density lipoprotein, and rs5128 variant is associated
with lipid profile changes [44]. Our data indicated that APOC3
rs5128 directly affects in LDL levels and indirectly other lipid
levels. No pleiotropic effects are observed in this causative
network.

Conclusions

This study reported on what is to our knowledge the first
comprehensive analysis of dietary habits in relation to CMTs in
the Turkish population. We collected about 100 characteristics
for each participant. This raised two issues: reduced samples size
and increased number of tests. Accordingly, our study population
is not large enough to enable us to detect significant pairwise
correlations after multiple testing correction. However, our aim
was not to detect pairwise correlations among the characteristics
tested, but to determine causative networks that integrate di-
etary habits, lifestyle, and genetic information. Our main results
were obtained applying hierarchical clustering and Bayesian
network analyses to integrate data regarding dietary habits,
lifestyle, and genetic predisposition. These investigations pro-
vide novel details about the complex interactive processes at the
basis of the pathogenesis of cardiometabolic diseases. A better
understanding of the complex pathogenic mechanisms of car-
diometabolic disorder can have relevant translational implica-
tions since it can help to develop novel therapeutic and
preventive approaches. Further studies with larger sample size
and genome-wide data could fully exploit our approach and shed
further light on the complex causative relationships of CMTs.
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Supplementary data related to this article can be found at
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